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O, INTRODUCTION 

Proved here are two integral representation theorems related to complex varia- 

bles. They illustrate one way in which Choquet's Theorem and its relatives can be 

used. Other examples, analyzed in a similar way, can be found in [i0], [4], [2]. 

Both of the theorems proved here were originally proved by other methods, but here 

I have proved them by analyzing the extremal structure of an appropriate compact 

convex set. 

We will use the following notation: 

u = {z ~ c : Iz l  < l }  

U + = {z E U :Im z > 0} 

U- = {z c U : Im z < 0}. 

The space of all holomorphic functions on U will be denoted H(U). It will be 

given the topology of uniform convergence on compact subsets of U. It is then a 

locally convex topological vector space. (In fact, a Fr~chet space.) It has the 

property that every closed, bounded set in H(U) is compact. (So H(U) is a 

"Montel space".) This follows from Montel's theorem on normal families. See 

[8, p. 32]. We write ex S for the set of extreme points of a convex set S. 

] ,  THE RIESZ-HERGLO'I-Z REPRESENTATION 

The following theorem was apparently first proved by F. Riesz~ but is most 

commonly attributed to G. Herglotz. 

THEOREM i.i. If f E H(U) and Re f(z) > 0 for all z E U, then there is a posi- 

tive, finite, Borel measure ~ on T = {~ ~ C: I~l = i} and a real number y such 

that f can be represented 

(i) f(z) = iy + I ~ -+'~z v(d~)'z 

T 
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Z E U. 
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By taking real parts, we can rewrite this as a representation for positive 

harmonic functions h on U: 

h(z) = I 1 - Iz l  2 u(da) 
T Iz - el 2 

The integrand is the Polsson kernel. A proof of Theorem i.i (not using Choquet's 

theorem) can be found, for example, in [9, p. 2623. 

Let S = {f ~ H(U) : Re f(z) > 0 for z e U, f(0) = I}. Then S is closed, 

since by the minimum principle for the harmonic function Re f, S is also equal to 

{f £ H(u) : Re f(z) ~ 0, f(0) = i}. Clearly S is convex. By Schwarz's Lemma, 

for R < 1 we have, for f ~ S, 

max if(z) l < i ~ R 
Izl~ R - i R 

(See [I, p. 136, Exercise 2] for the appropriate version of Schwarz's Lemma.) This 

shows that S is a hounded set. Therefore S is a compact, convex set in the lo- 

cally convex space H(U). It remains to determine ex S. For e £ T, let 

he(z ) e + z 
= ?~-7 

~ .  ex S = {h e : e ~ T}. 

Lennna 1.2 can easily he deduced from Theorem i.I (see [I0, p. 117]). But the 

point here is to prove Theorem i.i using Lemma 1.2. R. Phelps asked in [103 for a 

proof of Lemma 1.2 without using the integral representation. F. Holland [5] pro- 

vided such a proof. I provide another one below. 

Proof of 1.2. First, note that if f E S, then If'(0) l N 2, by Schwarz's lemma 
i 

(see [i, p. 136]). Given f e S, let e = ~ - ~  = a + lb. Then lel N I. Con- 

sider 

gez) = - 7 a + 2 (z + f(z) + b * ~ (z - . 

Now limz÷ 0 g(z) = 0, so g is holomorphic on U. Let fi = f + g and f2 = f - g" 

I claim fl' f2 e S. To prove this, we may assume f is holomorphic on U by 
ie 

considering f(rz), r < i, and then letting r ÷ i. Now for z = e , we have 

Re f(e i8) ~ 0, so 

fl(ei@) 1 i Re = [i - ~ a + ~cos 0] Re f(e i@) > 0. 

By the maximum principle, Re fl(~) > 0 on all of U. Therefore fl¢ S. Similarly, 
1 

f2 ¢ S. Note also that f = ~ (fl + f2 )" So if f is an extreme Point of S, 
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then fl = f = f2' SO g= 0, so 

ib+l i -2- ~- (z - -~) 
f(z) : 

i i I 
y a -  Z- (z +7) 

2 
i - 2ibz - z = 

:2 
i - 2az + z 

Now repeat the process: consider 

g(z) = ~ b + ~ (z - f(z) + a + ~ (z + . 

Then limz÷ 0 g(z) = O, so g is holomorphic. Let fl = f + g' f2 = f - g" 

fore, fl, f2 ~ S. If f is extreme, then g - 0, so 

1 i 1 2 
2-~a + ~- (z + z') i + 2az + z 

f(z) = = 
ib_l i 2 

~" (z - i-) i + 2ibz - z 

As be- 

Comparing the two expressions for f(z) yields 

or 

2 2 
i - 2ibz - z i + 2az + z 

i - 2az + z 2 1 + 2ibz - z 2 

i + z26-2 + 4b 2) + z 4 = i + z2(2 - 4a 2) + z 4 

SO 
2 b 2 a + = 1, and I~I = i. Then 

f (z) = 
2 2 

i + 2az + z 1 + (~ + ~) z + z 
2 = 2 

i + 2ibz - z i + (~ - E) z - z 

This shows 

(~- z) (~ + z) ~- z 

ex S E {ha: I~] = 1} .  

Now there is at least one extreme point. Rotations of the disk map one func- 

tion h into all the others, so if one is extreme, they all are. So 

ex S = {ha: leI = I}. | 

Proof of l.l. The map ~ + h is continuous from T into H(U). It is also in- 

jective. Since T is compact, this map is a homeomorphism of T onto ex S° So 

ex S is a closed subset of S. By Choquet's Theorem (or even the Krein-Milman 

Theorem, see [i0, Prop. 1.2]), for any f e S there is a probability measure ~I 

on ex S such that 

f = f h ~l(dh)" 
S 
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By means of the homeomorphism described above, the measure ~i corresponds to a 

measure ~ on T such that 

Since, for z £ U, the map 

conclude that 

f = I h a ~(d~). 
T 

f ÷ f(z) is a continuous linear functional, we may 

f ( z )  = f h (z)  ~ ( d a )  
T 

for all z e U. If f is any holomorphic function on U with nonnegative real 

part, then f = cf I + iy for c = Re f(O), fl e S, y £ ~, so such an f can be 

represented in the form (i), where ~ is c times a probahility measure. | 

2, ROBERTSONIS REPRESENTATION 

The following is a definition of Rogosinski [6]. 

Definition. A holomorphie function f defined on U is called typically real 

if f(z) is real if and only if z is real. 

Robertson [7] proved the following representation theorem for typically real 

functions. 

THEOREM 2.1. Let f e H(U) be a typically real function. Then there exist real 

numbers a, b and a probability measure ~ on [-I, i] such that 

I f(z) = a + b 
1 + 2tz + z 2 ~(dt), z e U. 

-i 

Robertson proved this by transforming the problem into another one where an 

integral representation theorem was already known. In this paper, we will analyse 

the extreme point structure of an appropriate convex set. Fewer details will be 

given than in the previous case. 

Let 

T = {f £ H(u): f is typically real, f(0) = 0, f'(O) = i}. 

Note that if fl is typically real, then fl = a + bf 

f E T. As before, T is a closed, convex set in H(U). 

it can be shown that if f e T and R < i, then 

max I f (z) I ~ R 
IzI~R (i - R) 2 

Therefore T is bounded, and hence compact. 

where a, b are real and 

Using the Schwarz theorem, 
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For t ~ [-i, i], let 

ht(z ) = z 
2 

1 + 2tz + z 

for all z e U. As in the proof of Theorem i.i, the only remaining step in the proof 

of Theorem 2.1 is the following lemma. 

Lemma 2.2. ex T = {ht: t e [-i, I]}. 

Of course, this is an easy consequence of Theorem 2.1. (See [3] for an explicit 

statement of this fact.) But our intention is to use 2.2 to prove 2.1. Another 

possibility is to transform the convex set T affinely into a convex set whose 

extreme points are known. (This is Robertson's approach.) But our intention is to 

proceed directly with T. 

Proof of 2.24 

and 

We first claim that if f e T and A ~ 2, then 

f1(z) = (A- !z -z) f(z) 

f2(z) = (A + z I-- + z) f(z) 

are typically real. By considering f(rz)/r, 0 < r < i, as r ÷ i, we may assume 

f is holomorphic on U. For -i N x N i, x ~ 0, f (x) and f2(x) are real. And 
i01 

fl(0) = -i, f2(0) = i are also real. For z = e , Im fi(ei@)=(A-2cos @)Im f(e i@) 

has the same sign as Im f(eiS). So Im fl is positive on U +, negative on U ~. 

Therefore f1' f2 are typically real. 

Now suppose f e ex T. Let t = -f"(O)/4. I will show f = h t and -iNt~l. 

Choose A > 21t I + 2. Let 

1 
g(z) =-;-(i - (_=-+ z + 2t) f(z)). 

/% 

Note that g(O) -- g'(0) = 0. Now 

I i 1 Z) f(z) (f + g)(z) = ~ + ~ (A - 2t - ~- 

is typically real, since A - 2t > 2. Similarly, f - g is typically real since 

A + 2t > 2. Also (f + g)(0) = (f - g) (0) = O, (f + g)'(0) = (f - g)'(O) = i. 

f + g, f - g e T. But f is extreme, so g -- 0, and thus 

So 

f (Z) = z 
2 " 

1 * 2tz + Z 
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If t > 1 or t < -i, this has a pole inside U. So -i N t N i. This shows that 

ex T ~ {ht: -i ~ t ~ I}. 

(f) = Re (-12af"(O) - f'"(O)) For fixed a ~ [-i, i], the map Ta, defined by T a 

is a continuous linear functional on H(U), so its maximum on T is achieved at an 

extreme point. But Ta(h t) =-24t 2 + 48at + 6 has its maximum at t = a, so 

h a e ex T, a ~ [-I, I]. Therefore ex T = {ht: -i ~ t N i}. | 

The proof of Theorem 2.1 from Lemma 2.2 is the same as the corresponding proof 

of Theorem i.i, and is therefore omitted. 
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